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The problem of nonsteady-state plane flow is considered for a viscoplastic medium between
parallel walls, under the action of an instantaneously applied pressure gradient which is con-
stant in time. A nonlinear integrodifferential equation is obtained for the distribution of the
tangential shear stresses in the regions investigated; the method of successive approximations
is used to obtain the solution. The determination of the time during which the required inter-
face reaches a specified position is reduced to the evaluation of a quadrature.

The problem of nonsteady-state flow of a viscoplastic medium at rest at a given instant in a plane
channel under the action of an instantaneously applied pressure gradient which is time-constant has been
the subject of a number of investigations. In [1], in order to determine the position in time of the required
interface between the zones of viscous flow and guasisolid motion, Volterra's integral equations of the
first species are obtained and the asymptotics of the solution for small time values are studied. The use
of an integral two-sided Laplace transform with respect to a space variable permits the solution of this
problem to be obtained in the form of a power series [2]; however, the solution obtained describes suffi-
ciently well the agsymptotic behavior of the interface between zones for small values of time but is less
suitable for studying the behavior of its solution for large time values. The integral one-sided Laplace
transform method with respect to a time variable, in the application to the problem of the nonsteady-state
flow of a viscoplastic medium in a plane channel, reduces to some functional system of equations from which
the position in time of the required zonal interface can be determined. The functional system obtained in
this case is little suited to realistic calculations. The solution of the problem being considered by the in-
tegral Laplace transform method for the plane [4] and axisymmetrical [5] cases contains the principal
error in the setting up of the boundary conditions, which is reviewed in detail in [3]. The analogous prob-
lem in [6] is solved by the Monte-Carlo statistical tests method. Despite the simplicity of carrying out
the numerical procedure of the Monte-Carlo method, it is preferable to have an analytic expression
for the position in time of the required zonal interface. The method of successive approximations, suc-
cessfully applied in [7, 8] to the solution of Stefan's
plane single-phase problems on freezing, is used
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Fig. 1. Assumed flow pattern. I) Velocity against gradient dp/dz < 0. The assumed velocity
distribution of medium; II) distribution of tan- distribution of the medium u and the tangential shear
gential shear stresses, stresses 7 for a certain instant t > 0, and also the
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arrangement of the system of coordinates are shown in

)
Fig. 1la.
0.8 The Speciél characteristic of one-dimensional flows
06 of viscoplastic media is the possibility of formation of
: zones of quasisolid motion in which the absolute value of
the tangential shear strésses is less than the limiting
0.4 ips st s
shear stress 7;. The position of the required interfaces
4 / 0.8 of the viscous zones and the zone of gquasisolid motion for
0.2 a certain instant t > 0 is shown in Fig. 1a by the dot-dash
lines.
0 0.2 X 0.6 ¢ Because of the symmeétry of the flow being con~

sidered, it is sufficient to limit construction of the solu-
tion to the lower half of the channel x € (0, h). The equa-
tion of motion of a viscoplastic medium in a plane channel
and the rheological law connecting the tangential shear

Fig. 2. Dependence of the position of the
zone interface on time, 1) Result of first
approximation; 2) result of second approx-

imation. stresses with the rate of deformation of a solid medium
have the form (9]
p-(_?g. :_QT__.E&; gp_.:const’ (1)
ot ox 0z dz
du s du 2
= ign—o , [t > 1T, (2)
T= g Tsign > 1
Ou
— 0, IT! <T0- (3)
dax ;
The condition for the existence of a quasisolid zone bounded by the surface x = §(t) has the form
(8, t) =7, (4)
The wall of the channel x = 0 is assumed to be stationary, in consequence of which we have
u(0, 1) =0. (5)

Movement of the quasisolid core of the flow §(t) < x < h as a single entity is possible only by satisfying the
following condition at the required boundary (3, 6]:
ot T,

ax h—8(0)

Flow of the viscoplastic mediumin the case being considered develops from a state of rest when the quasi-
solid zone has occupied the entire space between the channel walls and, therefore, we take as the initial
condition for &(t),

for x =98 (f). (6)

8(0) = 0. (7)

Differentiating Eq. (1) with respect to the variable x and Eq. (2) with respect to the variable {, we obtain
after simple transformations
ot p O

ot p 0«

(8)

We note that the equation of motion in the form of Eq. (8) is valid only for the zone of viscous flow 0 < x
< §(t), in which the rheological law in the form of Eq. (2) occurs, Using the condition of velocity continuity
of the medium and the tangential shear stresses, by taking account of condition (5) and Eq. (1) we obtain
ot dp
= =0. 9
ox  dz or X @)

The problem ofEgs. (4) and (6)-(9) is written in T-presentation (3, 6].

We introduce the dimensionless quantities:

T = (T — o)/ Tchar Xx=xh {= p};tz (S
dp
A =8/h; 5= To/Tchar where Tepar= — p
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Omitting the stroke over the dimensionless quantities X andT, we rewvrite the problem (4) and (6)-(9) in
the following form:

2
T 0T D, 1:0<x< A(l), <t <M< o), (10)
ot oxt
or =—1 for = x=0, (11)
dx
oT s
= - for . x = A(f), 12)
ox =A@ @ (
T=0 for x=A(), (13)
A(0) = 0. (14)

The zone of plastic flow (region D) is shown at the phase plane (x, t) in Fig, 1b.

We integrate Eq. (10) with respect to the variable x in the limits from 0 to x and we use condition (11)

o __ I+ or dx. (15)
ox ot
]

When x = A(t), Eqg. (15) taking account of condition (12) assumes the form

- 1—A
Sade:_“s

J ot 1—A (16)
0
It is easy to see that 8 /8t = (3/9A) « (dA /dt) = A(d /8A), as a result of which we obtain from Eq. (16)
A
. [, — -1
AolzA—s ( I )™ (17)
I1—A J 0A
As the RHS of Eq. (17) depends only on A, if we take into account the starting condition (14), we have
A
A a—a (L
0A
- 0 ,
t = gy dA. (18)

Expression (18) enables us to obtain t = t(A) if we plot the function T = T(x, A), We integrate Eq. (15) with
respect to the variable x between the limits from x to A and we take into account the condition at the re-
quired boundary (13)

A x

T, )=A—x— Sg-?—dxdx. (19)
6

Taking relation (17) into account, it is easy to obtain

T A=Ay 2% 2§ (20)

A oA
T, A)=A—x—1=8=8 $i

1—A A
g Ty .,
) 0A
0

Taking as a first approximation
Ty=4A—ux,
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we obtain
1—A—s AP

T,=8A—x— . , 22
! 1—a 24 - 22)
Ty— A—x— 1 —A—s [(1+ sA 1A —s\ N2
1—A 2(1—Ay 2(1—4) 2

_l_( s n Il —A—s\ A" — 57,
6 LAl — AR Az(luA}) 4 J

) sA _2l1—A—s
'[1+3(1—A)2 3 1—A ] 23)

Substituting in expression (18) the results of the successive approximation (21)-(23), we have respectively:

1 1 —
tl:_Q—AE—SA—%—S{I—S}In_l___S_i‘K’ (24)
A? 2 l1—s 2—9)s l—s—(2—sA+A? 2 —2s 4 & (1—A)y(1—3s)
—_——— 1— —+ In — -+ In ,
ty sA+s(1—s) IZS_A 5 ‘ | —s 5 T A—s o5
_(xU=n L fl=x—s (B 5 B . 1o
Ig—ji—x—s{““,q[ 1—x (30"+gA 3°F C)
Lo B o\ (x=x—9 A | x(Q—0+1—20(1—x—53) "
+ 3 (C 10 x>( 1—x A (1 —x)? )]}dx (26)
where
— 2—
A=_1_+.f___(g___i)_; B — (l—x)"—s |
3 3 {I—x® 21— xp
C=:1+i. x l—x—s :

2 (—xr 2(1—x)
the dash denotes the derivative of the corresponding function with reVSpect to the variable x.

The nature of the convergence of the iteration process for t = t(A) is easily seen in Fig. 2, where
the first, second, and third iterations are shown for values of the plasticity parameter s = 0.2 and also
the results of the third approximation for certain values of the plasticity parameter. We note that A = A(t)
when t > 0,6 differs slightly from the value Ag = 1--8, corresponding to completely steady-state flow,

NOTATION

is the time;

is the density;

is the tangential shear stress;

is the coefficient of dynamie viscosity;

is the half-width of channel;

is the longitudinal coordinate;

is the pressure;

is the velocity of medium;

is the transverse coordinate;

is the function, describing the position of the boundary of the zone interface;
is the dimensionless tangential shear stress;

is the plasticity parameter;

is the dimensionless function, describing the position of the boundary of the
zone interface;

is the region of plastic flow;

Ty, Ty, Ty, by, by, t3 are the results of successive approximations;

A, B, C are the auxiliary functions;

Ag is the value of function A in the case of completely steady-state flow.
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